martes, 15 de mayo de 2012

DESCUBRIMIENTO DEL PENDULO


Se puede decir que el péndulo es el símbolo de la ciencia. Con este elemento tan simple, se pudo comprobar la translación de la tierra, ya que este se mantiene siempre en el mismo lugar, demostrando el giro de la tierra. 

El principio del péndulo fue descubierto originalmente por Galileo (fisico y astrónomo), quien estableció que el periodo de oscilación es independiente de la amplitud (distancia máxima que se aleja el péndulo de la posición de equilibrio). Por el contrario, sí depende de la longitud del hilo.

Luego surgió justamente lo que te dije al principio: péndulo de Foucault es un péndulo largo que puede oscilar libremente en cualquier plano vertical y capaz de oscilar durante horas. Se utiliza para demostrar la rotación de la Tierra y la fuerza de Coriolis. Se llama así en honor de su inventor, León Foucault.

 Péndulo, usado en los relojes y otros instrumentos para medir con precisión el tiempo.

Péndulo, dispositivo formado por un objeto suspendido de un punto fijo y que oscila de un lado a otro bajo la influencia de la gravedad. Los péndulos se emplean en varios mecanismos, como por ejemplo algunos relojes.
En el péndulo más sencillo, el llamado péndulo simple, puede considerarse que toda la masa del dispositivo está concentrada en un punto del objeto oscilante, y dicho punto sólo se mueve en un plano. El movimiento del péndulo de un reloj se aproxima bastante al de un péndulo simple. El péndulo esférico, en cambio, no está limitado a oscilar en un único plano, por lo que su movimiento es mucho más complejo.
El principio del péndulo fue descubierto por Galileo, quien estableció que el periodo de la oscilación de un péndulo de una longitud dada puede considerarse independiente de su amplitud, es decir, de la distancia máxima que se aleja el péndulo de la posición de equilibrio. (No obstante, cuando la amplitud es muy grande, el periodo del péndulo sí depende de ella). Galileo indicó las posibles aplicaciones de este fenómeno, llamado isocronismo, en la medida del tiempo. Sin embargo, como el movimiento del péndulo depende de la gravedad, su periodo varía con la localización geográfica, puesto que la gravedad es más o menos intensa según la latitud y la altitud. Por ejemplo, el periodo de un péndulo dado será mayor en una montaña que a nivel del mar. Por eso, un péndulo permite determinar con precisión la aceleración local de la gravedad.
“El fenómeno del Péndulo Simple pasó de ser un "formulazo" a un modelo, y de éste a un experimento, pero la historia no estaba terminada aún. Investigando más sobre el péndulo "simple" , llegué a encontrar que Galileo por allá del siglo XVI también tuvo que ver con este artefacto. Se cuenta que un día del año de 1583, en la catedral de Pisa le llamaron la atención las oscilaciones de una lámpara de aceite que pendía del techo, observó que el tiempo que tardaba en completar una oscilación era aproximadamente el mismo, aunque la amplitud del desplazamiento iba disminuyendo con el tiempo. Fue aquí cuando el relato me conmovió, porque yo no sabía que, como nuestro amigo Galileo no tenía cronómetro para medir los intervalos del tiempo y verificar su observación, entonces ¡usó como patrón de medida su propio pulso! Estas mediciones tuvieron una profunda influencia en los estudios científicos de la época”.
Debido a su acercamiento matemático al movimiento, Galileo estaba intrigado por el movimiento hacia atrás y delante de un cuerpo pesado suspendido. Sus consideraciones más tempranas de este fenómeno deben datar de los días anteriores a que aceptara un puesto de maestro en la universidad de Pisa.
Su primer biógrafo, Vincenzo Viviani, afirma que comenzó su estudio de los péndulos después de que observara una lámpara suspendida balanceándose hacía delante y atrás en la catedral de Pisa cuando todavía era un estudiante allí. Las primeras notas de Galileo sobre la materia datan de 1588, pero no comenzó a hacer investigaciones serias hasta 1602.
El descubrimiento de Galileo fue que el periodo del balanceo de un péndulo es independiente de su amplitud - el arco del balanceo - el isocronismo del péndulo. Este descubrimiento tenía importantes aplicaciones para la medida de intervalos de tiempo. En 1602 explicó el isocronismo de péndulos largos en una carta a un amigo, y un año después a otro amigo, Santorio Santorio, un físico de Venecia, que comenzó a usar un péndulo corto, al que llamó "pulsilogium", para medir el pulso de sus pacientes. El estudio del péndulo, el primer oscilador armónico, data de este periodo.
El movimiento del péndulo planteaba interesantes problemas. ¿Qué movimiento era más rápido desde un punto elevado a otro más bajo, aquél a lo largo de un arco circular como un péndulo o aquél a lo largo de una línea recta como en un plano inclinado? ¿Afecta el peso del péndulo al periodo? ¿Cuál es la relación entre la longitud y el periodo? A través de su trabajo experimental, el péndulo nunca se alejó demasiado de los pensamientos de Galileo. Pero también estaba la cuestión de su uso práctico.
Un péndulo podría usarse para medir pulsos o actuar como un metrónomo para estudiantes de música: sus balanceos medían intervalos de tiempo iguales. ¿Podría usarse también para mejorar los relojes? El reloj mecánico, que usaba un cuerpo pesado para proporcionar el movimiento, comenzó a desplazar al reloj de agua en la Edad Media. Por sucesivas mejoras, el sistema se había hecho más pequeño y más fiable. Pero la precisión de los mejores relojes era todavía demasiado mala para, por ejemplo, tener utilidad en astronomía. No solo se adelantaban o retrasaban, sino que además lo hacían de una forma irregular e impredecible. ¿Podría añadirse un péndulo al mecanismo de escape de un reloj para regularlo?
En 1641, a la edad de 77 años, totalmente ciego, Galileo centró su atención en este problema. Vincenzo Viviani describe los sucesos tal y como sigue:
"Un día de 1641, cuando yo vivía con él en su pueblo en Arcetri, recuerdo que se le ocurrió la idea de que el péndulo podría ser adaptado a relojes con pesos, sirviendo en lugar del habitual tempo, confiando en que el movimiento natural y uniforme del péndulo corregiría todos los defectos del arte de los relojes. Pero dado que estaba privado de la vista, no pudo hacer dibujos y modelos del efecto deseado, y le contó a su hijo Vicenzio que venía un día de Florencia a Arcetri su idea y discutieron sobre ella. Finalmente decidieron un esquema que debería ser puesto en práctica para aprender de las dificultades que aparecerían y que no se habrían previsto por la teoría."
Vivani escribió esto en 1559, diecisiete años después de la muerte de Galileo y dos años después de la publicación de Horologium de Christiaan Huygens, en el que éste describía su reloj de péndulo.

viernes, 11 de mayo de 2012

Galileo Galilei



Galileo Galilei


(Pisa, actual Italia, 1564-Arcetri, id., 1642) Físico y astrónomo italiano.
 Fue el primogénito del florentino Vincenzo Galilei, músico por vocación aunque obligado a dedicarse al comercio para sobrevivir. En 1574 la familia se trasladó a Florencia, y Galileo fue enviado un tiempo –quizá como novicio– al monasterio de Santa Maria di Vallombrosa, hasta que, en 1581, su padre lo matriculó como estudiante de medicina en la Universidad de Pisa. Pero en 1585, tras haberse iniciado en las matemáticas fuera de las aulas, abandonó los estudios universitarios sin obtener ningún título, aunque sí había adquirido gusto por la filosofía y la literatura.
En 1589 consiguió una plaza, mal remunerada, en el Estudio de Pisa. Allí escribió un texto sobre el movimiento, que mantuvo inédito, en el cual criticaba los puntos de vista de Aristóteles acerca de la caída libre de los graves y el movimiento de los proyectiles; una tradición apócrifa, pero muy divulgada, le atribuye haber ilustrado sus críticas con una serie de experimentos públicos realizados desde lo alto del Campanile de Pisa.
En 1592 pasó a ocupar una cátedra de matemáticas en Padua e inició un fructífero período de su vida científica: se ocupó de arquitectura militar y de topografía, realizó diversas invenciones mecánicas, reemprendió sus estudios sobre el movimiento y descubrió el isocronismo del péndulo. En 1599 se unió a la joven veneciana Marina Gamba, de quien se separó en 1610 tras haber tenido con ella dos hijas y un hijo.
En julio de 1609 visitó Venecia y tuvo noticia de la fabricación del anteojo, a cuyo perfeccionamiento se dedicó, y con el cual realizó las primeras observaciones de la Luna; descubrió también cuatro satélites de Júpiter y observó las fases de Venus, fenómeno que sólo podía explicarse si se aceptaba la hipótesis heliocéntrica de Copérnico. Galileo publicó sus descubrimientos en un breve texto, El mensajero sideral, que le dio fama en toda Europa y le valió la concesión de una cátedra honoraria en Pisa.
En 1611 viajó a Roma, donde el príncipe Federico Cesi lo hizo primer miembro de la Accademia dei Lincei, fundada por él, y luego patrocinó la publicación (1612) de las observaciones de Galileo sobre las manchas solares. Pero la profesión de copernicanismo contenida en el texto provocó una denuncia ante el Santo Oficio; en 1616, tras la inclusión en el Índice de libros prohibidos de la obra de Copérnico, Galileo fue advertido de que no debía exponer públicamente las tesis condenadas.

El Santo Oficio abrió un proceso a Galileo que terminó con su condena a prisión perpetua, pena suavizada al permitírsele que la cumpliera en su villa de Arcetri. Allí transcurrieron los últimos años de su vida, ensombrecidos por la muerte de su hija Virginia, por la ceguera y por una salud cada vez más quebrantada. Consiguió, con todo, acabar la última de sus obras, los Discursos y demostraciones matemáticas en torno a dos nuevas ciencias, donde, a partir de la discusión sobre la estructura y la resistencia de los materiales, demostró las leyes de caída de los cuerpos en el vacío y elaboró una teoría completa sobre el movimiento de los proyectiles. El análisis galileano del movimiento sentó las bases físicas y matemáticas sobre las que los científicos de la siguiente generación edificaron la mecánica física.Su silencio no se rompió hasta que, en 1623, alentado a raíz de la elección del nuevo papa Urbano VIII, publicó El ensayador, donde expuso sus criterios metodológicos y, en particular, su concepción de las matemáticas como lenguaje de la naturaleza. La benévola acogida del libro por parte del pontífice lo animó a completar la gran obra con la que pretendía poner punto final a la controversia sobre los sistemas astronómicos, y en 1632 apareció, finalmente, suDiálogo sobre los dos máximos sistemas del mundo; la crítica a la distinción aristotélica entre física terrestre y física celeste, la enunciación del principio de la relatividad del movimiento, así como el argumento del flujo y el reflujo del mar presentado (erróneamente) como prueba del movimiento de la Tierra, hicieron del texto un verdadero manifiesto copernicano.

OBRAS:

Física
Galileo realizó notables aportaciones científicas en el campo de la física, que pusieron en entredicho teorías consideradas verdaderas durante siglos. Así, por ejemplo, demostró la falsedad del postulado aristotélico que afirmaba que la aceleración de la caída de los cuerpos -en caída libre- era proporcional a su peso, y conjeturó que, en el vacío, todos los cuerpos caerían con igual velocidad. Para ello hizo deslizar esferas cuesta abajo por la superficie lisa de planos inclinados con distinto ángulo de inclinación (y no fue con el lanzamiento de cuerpos de distinto peso, desde la torre inclinada de Pisa, como se había creído durante mucho tiempo).
Entre otros hallazgos notables figuran las leyes del movimiento pendular (sobre el cual comenzó a pensar, según la conocida anécdota, mientras observaba una lámpara que oscilaba en la catedral de Pisa), y las leyes del movimiento acelerado.
La obra que le hizo merecedor del título de Padre de la Física Matemática fue el Discorsi e dimostrazioni matematiche intorno a due nuove scienze attinenti la meccanica (Discursos y demostraciones en torno a dos nuevas ciencias relacionadas con la mecánica), escrita con la ayuda de su discípulo Torricelli, donde describe los resultados de sus investigaciones sobre mecánica. Esta obra sentó las bases físicas y matemáticas para un análisis del movimiento, y se convirtió en la base de la ciencia de la mecánica, edificada por científicos posteriores, como Isaac Newton. Galileo creó dos nuevas ciencias conocidas en la actualidad como Dinámica y Resistencia de materiales.